Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.
نویسندگان
چکیده
Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the principles of the aforementioned four electrochemical techniques and the corresponding analytical equations for calculating the chemical diffusion coefficients are first briefly summarized, followed by a discussion of the hidden assumptions for deriving these analytical equations and the resulting limitations in their implementation. To address these limitations, various corrections have been made in the literature. Nevertheless, the phase transition behavior, which is the typical feature for many intercalation materials, is barely considered. Here we retrospect our previous work on developing a two-phase model for describing the phase transition behavior of some intercalation compounds and discuss how to obtain the chemical diffusion coefficients based on the model, using LiFePO4 as an example material. After that, we have a discussion on the methodology for using electrochemical techniques to investigate new material features. It is our hope that this Account can serve as a call for more endeavors into the development of novel electrochemical tools for battery research.
منابع مشابه
Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries
Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملIn situ electrochemical synchrotron radiation for Li-ion batteries.
Observing the electronic structure, compositional change and morphological evolution of the surface and interface of a battery during operation provides essential information for developing new electrode materials for Li-ion batteries (LIBs); this is because such observations demonstrate the fundamental reactions occurring inside the electrode materials. Moreover, obtaining detailed data on che...
متن کاملPromises and challenges of nanomaterials for lithium-based rechargeable batteries
1 Energy storage is an essential element of the complete landscape of energy processes, closely coupled with energy generation, transmission and usage. Development of lithium-based rechargeable batteries with higher energy density, lower costs and improved safety is highly desirable1–3. Over the past 25 years, lithiumion batteries based on conventional intercalation electrode materials have pla...
متن کاملUnderstanding materials challenges for rechargeable ion batteries with in situ transmission electron microscopy
An in-depth understanding of material behaviours under complex electrochemical environment is critical for the development of advanced materials for the next-generation rechargeable ion batteries. The dynamic conditions inside a working battery had not been intensively explored until the advent of various in situ characterization techniques. Real-time transmission electron microscopy of electro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accounts of chemical research
دوره 50 4 شماره
صفحات -
تاریخ انتشار 2017